$$v_e =\sqrt{2GM_E/R_E}$$
Dove:
v_e è la velocità di fuga
G è la costante gravitazionale (G ≈ 6,67430 x 10^-11 N·m²/kg²)
M_E è la massa della Terra (M_E ≈ 5.972 x 10^24 kg)
R_E è il raggio della Terra (R_E ≈ 6.378 x 10^6 m)
Inserendo i valori:
$$v_e =\sqrt{(2 x 6,67430 x 10^-11 N·m²/kg² x 5,972 x 10^24 kg)/(6,378 x 10^6 m)}$$
Calcolando il risultato, otteniamo:
$$v_e ≈ 11.180 m/s$$
Quindi, lo Space Shuttle deve raggiungere una velocità di circa 11.180 metri al secondo (circa 25.000 miglia all'ora) per sfuggire alla gravità terrestre e andare nello spazio.