La scienza si basa in gran parte su dati quantificabili. La raccolta di dati utili a sua volta si basa su misurazioni di qualche tipo, con massa, area, volume, velocità e tempo che rappresentano alcune di queste metriche di importanza cruciale.
Chiaramente, l'accuratezza, che descrive quanto un valore misurato si avvicina alla sua vero valore, è vitale in tutti gli sforzi scientifici. Ciò è vero non solo per le ragioni più ovvie e immediate del momento, come la necessità di conoscere la temperatura esterna per vestirsi adeguatamente, ma perché le misurazioni imprecise di oggi portano all'accumulo di dati errati a lungo termine. Se i dati meteorologici che raccogli in questo momento sono errati, anche i dati climatici che esaminerai nel 2018 in futuro saranno errati.
Per determinare l'accuratezza di una misurazione, di solito è necessario conoscere il vero valore in natura di tale misurazione. Ad esempio, una moneta "equa" lanciata un numero molto elevato di volte dovrebbe risalire il 50 percento delle volte e il 50 percento delle volte in base alla teoria della probabilità. In alternativa, più una misura è riproducibile (ovvero maggiore è la sua precisione Per determinare l'esattezza delle misurazioni a livello sperimentale, quindi, è necessario determinare la deviazione Chiama questo numero N. Se stai stimando la temperatura usando diversi termometri di precisione sconosciuta, usa quanti più termometri possibili. Aggiungi le misure e dividi per N. Se hai cinque termometri e le misure in Fahrenheit sono 60 °, 66 °, 61 °, 68 ° e 65 °, la media è (60 + 66 + 61 + 68 + 65) ÷ 5 \u003d (320 ÷ 5) \u003d 64 °. Questo produce la deviazione di ogni misura. Il motivo per cui è necessario un valore assoluto è che alcune misurazioni saranno inferiori al valore reale e alcune saranno maggiori; semplicemente sommando i valori grezzi si sommerebbe a zero e non indicherebbe nulla sul processo di misurazione. La statistica risultante offre una misura indiretta di la precisione della tua misurazione. Più piccola è la frazione della misura stessa rappresentata dalla deviazione, maggiore è la probabilità che la misurazione sia accurata, sebbene sia necessario conoscere il valore reale per essere assolutamente sicuri di ciò. Pertanto, se possibile, confrontare il risultato con un valore di riferimento, come, in questo caso, i dati ufficiali sulla temperatura del Servizio meteorologico nazionale.
) più è probabile che il valore sia vicino al valore reale in natura. Se le stime dell'altezza di una persona basate sulla testimonianza di 50 testimoni oculari cadono tutte tra 5'8 "e 6'0", puoi concludere con più certezza che l'altezza della persona è vicina a 5'10 "di quella che potresti fare se le stime andassero tra 5'2 "e 6'6", nonostante quest'ultimo fornisca lo stesso valore medio di 5'10 ".
.
Raccogliere il maggior numero di misurazioni della cosa che si sta misurando il più possibile
Trova il valore medio delle tue misure
Trova il valore assoluto della differenza di ciascuno Misura individuale dalla media
Trova la media di tutte le deviazioni sommandole e dividendole per N