Gli economisti hanno precedentemente fatto poco uso dei computer ad alte prestazioni (HPC) nelle loro ricerche. Questo nonostante il fatto che le complesse interazioni e l'eterogeneità dei loro modelli possano farli raggiungere rapidamente centinaia di dimensioni, che non possono essere calcolati con metodi convenzionali. Nel passato, sono stati quindi spesso formulati modelli semplificati per rispondere a domande complesse. Questi modelli hanno risolto alcuni problemi, ma potrebbero anche fornire false previsioni, spiega Simon Scheidegger, Assistente senior presso il Dipartimento di banche e finanze dell'Università di Zurigo. Per esempio, lo studio quantitativo della politica monetaria ottimale a seguito di una crisi finanziaria non può essere adeguatamente realizzato con i metodi convenzionali. Però, Anche il calcolo di modelli ad alta dimensionalità su un supercomputer non è facile. Fino a poco tempo fa, i ricercatori non disponevano di un'analisi numerica adeguata e di un software altamente efficiente.
La maledizione della dimensionalità
A differenza dei modelli fisici, in cui il tempo è considerato come una quarta dimensione accanto alle tre dimensioni spaziali, i modelli economici devono considerare dieci o anche cento volte più dimensioni. Anche un modello "semplice" di assicurazione pensionistica in un solo paese, che mira a rappresentare la prosperità della sua società ad ogni anno di età, mostra chiaramente quanto velocemente si raggiunga una maggiore dimensionalità:"Se assumiamo che le persone vivranno in media fino a 80 anni e guadagneranno dall'età di 20, e vogliono determinare la prosperità per ogni anno di età, abbiamo già 60 dimensioni, " spiega Scheidegger. Inoltre, le persone prendono le loro decisioni attuali tenendo conto delle incertezze future. Idealmente, un modello dovrebbe considerare tutte queste influenze.
Ci sono due principali punti critici nel calcolo di modelli economici così complessi. Il primo consiste nell'approssimare ricorsivamente le funzioni ad alta dimensione usando molti passaggi di iterazione. Allo stesso tempo, i sistemi di equazioni non lineari devono essere risolti in milioni di punti della griglia che descrivono il modello. Il calcolo di un tale modello può richiedere ore e talvolta giorni di tempo di calcolo, anche su supercomputer ad alte prestazioni come Piz Daint.
Modello annidato
Per trovare un metodo di soluzione altamente efficiente in grado di calcolare ricorsivamente le regole decisionali economiche (note come funzioni di policy), i ricercatori hanno combinato le cosiddette griglie sparse con un quadro di riduzione del modello ad alta dimensionalità. "La risultante combinazione lineare di griglie sparse, che descrivono il modello e quindi le funzioni di policy, sono annidati insieme come una bambola russa, e sono allineati in modo tale da approssimare e descrivere in modo ottimale lo spazio ad alta dimensione originale, " spiega Scheidegger. Il bello è che il codice per calcolare le singole griglie e la loro combinazione è altamente parallelizzato. Anche nei modelli piccoli con "solo" 50 dimensioni, il metodo scala in modo efficiente su Piz Daint fino a 1, 000 nodi di computer contemporaneamente. In parole povere, il framework di scomposizione dimensionale assicura che solo i punti e le dimensioni della griglia rilevanti che descrivono il modello in esame debbano essere calcolati. Per ridurre ulteriormente il tempo necessario per risolvere le funzioni e mantenere altamente efficiente la comunicazione tra i processori e i processi in esecuzione su di essi, i ricercatori hanno anche utilizzato uno schema di parallelizzazione ibrida (interfaccia di passaggio dei messaggi (MPI) e blocchi di costruzione di threading Intel® (TBB)).
Scheidegger e i suoi colleghi hanno quindi sviluppato un metodo che tiene conto in modo significativo delle eterogeneità ed evita l'eccessiva semplificazione. Funziona anche genericamente e quindi può essere applicato a una varietà di questioni, dai modelli di finanza pubblica, come le pensioni statali, ai modelli della banca centrale. "Come nel caso della fisica o della chimica assistita dal computer, il nuovo metodo dovrebbe consentire di risolvere radicalmente i modelli in economia, questo è ab initio, e poi confrontato con i dati del mondo reale e adattato secondo necessità, "dice Scheidegger.
Ulteriori ricerche su questo argomento saranno condotte in un progetto per la Platform for Advanced Scientific Computing (PASC).