• Home
  • Chimica
  • Astronomia
  • Energia
  • Natura
  • Biologia
  • Fisica
  • Elettronica
  • Gli scienziati sviluppano un modello che regola la difficoltà del videogioco in base alle emozioni del giocatore

    Il nuovo approccio alla regolazione dinamica della difficoltà (DDA) tiene conto delle emozioni del giocatore durante il gioco invece delle prestazioni del giocatore per fornire una migliore esperienza di gioco. Credito:Gwangju Institute of Science and Technology

    La difficoltà è un aspetto difficile da bilanciare nei videogiochi. Alcune persone preferiscono i videogiochi che rappresentano una sfida, mentre altri godono di un'esperienza facile. Per semplificare questo processo, la maggior parte degli sviluppatori utilizza la regolazione dinamica della difficoltà (DDA). L'idea di DDA è di regolare la difficoltà di un gioco in tempo reale in base alle prestazioni del giocatore. Ad esempio, se le prestazioni del giocatore superano le aspettative dello sviluppatore per un determinato livello di difficoltà, l'agente DDA del gioco può aumentare automaticamente la difficoltà per aumentare la sfida presentata al giocatore. Sebbene utile, questa strategia è limitata in quanto vengono prese in considerazione solo le prestazioni dei giocatori, non quanto si divertono effettivamente.

    In un recente studio pubblicato su Sistemi esperti con applicazioni , un gruppo di ricerca del Gwangju Institute of Science and Technology in Corea ha deciso di dare una svolta all'approccio DDA. Invece di concentrarsi sulle prestazioni del giocatore, hanno sviluppato agenti DDA che hanno regolato la difficoltà del gioco per massimizzare uno dei quattro diversi aspetti relativi alla soddisfazione del giocatore:sfida, competenza, flusso e valenza. Gli agenti DDA sono stati addestrati tramite l'apprendimento automatico utilizzando i dati raccolti da giocatori umani reali, che hanno giocato a un gioco di combattimento contro varie intelligenze artificiali (AI) e poi hanno risposto a un questionario sulla loro esperienza.

    Utilizzando un algoritmo chiamato Monte-Carlo tree search, ogni agente DDA ha utilizzato dati di gioco effettivi e dati simulati per ottimizzare lo stile di combattimento dell'IA avversaria in modo da massimizzare un'emozione specifica, o "stato affettivo".

    "Un vantaggio del nostro approccio rispetto ad altri metodi centrati sulle emozioni è che non si basa su sensori esterni, come l'elettroencefalografia", afferma il professor Kyung-Joong Kim, che ha guidato lo studio. "Una volta addestrato, il nostro modello può stimare gli stati dei giocatori utilizzando solo le funzionalità di gioco."

    Il team ha verificato, attraverso un esperimento con 20 volontari, che gli agenti DDA proposti potrebbero produrre IA che migliorano l'esperienza complessiva dei giocatori, indipendentemente dalle loro preferenze. Questo segna la prima volta che gli stati affettivi vengono incorporati direttamente negli agenti DDA, il che potrebbe essere utile per i giochi commerciali.

    "Le aziende di giochi commerciali dispongono già di enormi quantità di dati sui giocatori. Possono sfruttare questi dati per modellare i giocatori e risolvere vari problemi relativi al bilanciamento del gioco utilizzando il nostro approccio", afferma il Professore Associato Kim. Vale la pena notare che questa tecnica ha anche un potenziale per altri campi che possono essere "gamificati", come l'assistenza sanitaria, l'esercizio fisico e l'istruzione. + Esplora ulteriormente

    Uno studio rileva che le relazioni giocatore-personaggio influiscono sulla soddisfazione dei videogiochi




    © Scienza https://it.scienceaq.com