Un Plot box è un grafico utilizzato nelle statistiche che mostra il 50 percento del set di dati come una scatola. I grafici a riquadri sono utili per osservare i dati di una distribuzione di frequenza, i suoi valori medi, i valori estremi e la variabilità dei dati. I grafici a riquadri sono utili perché mostrano come si diffonde un set di dati, mostra se vi è simmetria sul set di dati e, soprattutto, i grafici a caselle mostrano valori anomali, che sono assenti dalla maggior parte dei grafici statistici.
Scopri il Quartili del set di dati. Ci sono 3 quartili sul set di dati, i quartili dividono il set di dati con incrementi del 25%. Il secondo quartile è la media del set di dati (50%) Il primo quartile è la media della prima metà del set di dati (25%) Il terzo quartile è la media della seconda metà del set di dati (75%) Trova il massimo e il minimo della tua distribuzione di frequenza. Questi cinque punti definiranno il tuo boxplot.
Disegna un diagramma XY. Etichettare l'asse Y (verticale) con i valori della distribuzione di frequenza. Etichetta l'asse X (orizzontale) con l'etichetta dati per la distribuzione di frequenza.
Inserisci i tuoi quartili, i punti minimo e massimo sul diagramma, sulla stessa colonna. Disegna una casella dal primo quartile al terzo quartile. Disegna una linea orizzontale che attraversa il secondo quartile, dividendo la casella in due.
Disegna una linea verticale che collega tutti i punti quartile, minimo e massimo. Posiziona i punti per i valori anomali (se presenti).