Separare il processo di moltiplicazione delle frazioni in pochi passaggi più piccoli ti aiuterà a capire meglio il processo. Ricorda che le frazioni sono composte da due parti: il numeratore Moltiplicando due frazioni Per moltiplicare due frazioni, moltiplichi i numeratori l'uno per l'altro e moltiplica i denominatori per ciascuno altro. Il prodotto dei due numeratori è il numeratore della tua risposta e il prodotto dei due denominatori è il denominatore della risposta. Prendi il seguente: 3/5 x 2/3 In primo luogo, moltiplica i numeratori: 3 x 2 = 6. Quindi moltiplica i denominatori: 5 x 3 = 15. Costruisci la frazione moltiplicata con il nuovo numeratore in cima e il nuovo denominatore in basso: 3/5 x 2/3 = 6/15 Semplificazione delle frazioni Dopo aver moltiplicato le frazioni insieme , controlla se riesci a semplificare la risposta. È possibile semplificare una frazione se sia il numeratore che il denominatore possono essere divisi per lo stesso numero. Puoi semplificare 6/15 perché entrambi 6 e 15 sono divisibili in modo uniforme per 3: 6/3 = 2 e 15/3 = 5. La tua risposta semplificata è 2/5. Non puoi dividere ulteriormente 2 e 5, quindi non puoi semplificare ulteriormente la frazione: 3/5 x 2/3 = 6/15 = 2/5 Notare che se il denominatore divide uniformemente nel numeratore, la frazione semplificata è un numero intero. Ad esempio: 4/3 x 6/4 = 24/12 = 2/1 = 2 Moltiplicando le frazioni per numeri interi Un numero intero, come 5, può essere espresso come una frazione con il numero intero come numeratore e 1 come denominatore: 5 = 5/1 Puoi moltiplicare qualsiasi frazione di un numero intero semplicemente moltiplicando il numeratore dal numero intero. Ad esempio, prendi 4 x 5/12. Moltiplicare 4 per 5 per produrre il nuovo numeratore, 20. Il denominatore rimane lo stesso: 4 x 5/12 = 4/1 x 5/12 = 20/12 Controlla se può semplificare questa frazione; puoi, sia 20 che 12 sono divisibili per 4. Dividi per 4, per ottenere 5/3. Non puoi dividere ulteriormente i 5/3, quindi hai la tua risposta: 4 x 5/12 = 20/12 = 5/3
in cima e il denominatore
in basso. In moltiplicazione frazionaria, numeratori e denominatori vengono moltiplicati singolarmente per produrre la frazione finale.