Gli universi e i binomiali sono entrambi tipi di espressioni algebriche. I monomeri possiedono un unico termine, come nel caso 6x ^ 2, mentre i binomiali possiedono due termini separati da un segno più o meno, come in 6x ^ 2 - 1. Sia i monomi che i binomiali possono essere costituiti da variabili, con i loro esponenti e coefficienti o costanti. Un coefficiente è un numero che appare sul lato sinistro di una variabile che viene moltiplicato per la variabile; ad esempio, nel monomio 8g, "otto" è un coefficiente. Una costante è un numero senza una variabile allegata; per esempio, nel binomio -7k + 2, "due" è una costante.
Sottrai due monometri
Assicurati che i due monomi siano come termini. Come i termini sono termini che possiedono le stesse variabili ed esponenti. Ad esempio, 7x ^ 2 e -4x ^ 2 sono termini simili, poiché entrambi condividono la stessa variabile ed esponente, x ^ 2. Ma 7x ^ 2 e -4x non sono come i termini perché i loro esponenti differiscono, e 7x ^ 2 e -4y ^ 2 non sono come i termini perché le loro variabili differiscono. Solo i termini simili possono essere sottratti.
Sottrai i coefficienti. Considera il problema -5j ^ 3 - 4j ^ 3. Sottraendo i coefficienti, -5 - 4, produce -9.
Scrivi il coefficiente risultante a sinistra della variabile e dell'esponente, che rimangono invariati. L'esempio precedente restituisce -9j ^ 3.
Sottrai un monomero e un binomio
Riorganizza i termini in modo che i termini simili vengano visualizzati uno accanto all'altro. Ad esempio, supponiamo che ti venga chiesto di sottrarre il monomio 4x ^ 2 dal binomio 7x ^ 2 + 2x. In questo caso, i termini sono inizialmente scritti 7x ^ 2 + 2x - 4x ^ 2. Qui, 7x ^ 2 e -4x ^ 2 sono come termini, quindi invertire gli ultimi due termini, mettendo il 7x ^ 2 e -4x ^ 2 uno accanto all'altro. Così facendo si ottengono 7x ^ 2 - 4x ^ 2 + 2x.
Effettua la sottrazione sui coefficienti dei termini simili, come descritto nella sezione precedente. Sottrai 7x ^ 2 - 4x ^ 2 per ottenere 3x ^ 2.
Scrivi questo risultato insieme al termine rimanente del Passaggio 1, che in questo caso è 2x. La soluzione all'esempio è 3x ^ 2 + 2x.
Sottrai due binomiali
Utilizza la proprietà distributiva per modificare la sottrazione in aggiunta quando sono coinvolte parentesi. Ad esempio, in 8m ^ 5 - 3m ^ 2 - (6m ^ 5 - 9m ^ 2), distribuisci il segno meno che appare alla sinistra delle parentesi in entrambi i termini all'interno delle parentesi, 6m ^ 5 e -9m ^ 2 in questo Astuccio. L'esempio diventa 8m ^ 5 - 3m ^ 2 - 6m ^ 5 - -9m ^ 2.
Cambia qualsiasi segno meno che appare direttamente accanto ai segni negativi in un singolo segno più. In 8m ^ 5 - 3m ^ 2 - 6m ^ 5 - -9m ^ 2, un segno meno appare accanto a un negativo tra gli ultimi due termini. Questi segni diventano un segno più, e l'espressione diventa 8m ^ 5 - 3m ^ 2 - 6m ^ 5 + 9m ^ 2.
Riordinare i termini in modo che i termini simili siano raggruppati uno accanto all'altro. L'esempio diventa 8m ^ 5 - 6m ^ 5 - 3m ^ 2 + 9m ^ 2.
Combina termini simili aggiungendo o sottraendo come indicato nel problema. Nell'esempio, sottrai 8m ^ 5 - 6m ^ 5 per ottenere 2m ^ 5 e aggiungi -3m ^ 2 + 9m ^ 2 per ottenere 6m ^ 2. Metti insieme questi due risultati per una soluzione finale di 2m ^ 5 + 6m ^ 2.